Zurück zu Heizungstechnik
 
× Startseite

Einstellungen | Mein Account
IKZ select Logo
Suchen          Support & Kontakt       Mein Account
IKZ select Logo

Lieber Gast, um alle Inhalte sehen zu können, müssen Sie angemeldet sein! Jetzt registrieren oder einloggen.

StartseiteThemenHeizungstechnikMaßnahmen bei Sauerstoffzutritt in Heiz- und Kühlkreisläufen

Maßnahmen bei Sauerstoffzutritt in Heiz- und Kühlkreisläufen



Maßnahmen bei Sauerstoffzutritt in Heiz- und KühlkreisläufenBild: perma-trade
Bild: perma-trade 
Bild: perma-trade 
Bild: perma-trade 
Bild: perma-trade 
Bild: perma-trade 
Bild: perma-trade 
Bild: perma-trade 

11. August 2023

Es gibt viele Möglichkeiten. Eine davon: den Sauerstoff herausfiltern
In der Regel bestehen wesentliche Teile geschlossener Heiz- und Kühlkreisläufe aus niedrig- oder unlegierten Eisenwerkstoffen. Die Korrosionsbeständigkeit dieser Stähle liegt dabei weniger in einer Werkstoffeigenschaft begründet. Sie hängt vielmehr mit der primären Abwesenheit von Sauerstoff im Anlagenwasser zusammen. Damit sind Probleme, die sich durch Sauerstoffeintrag ergeben, verbunden. Aber es gibt Lösungen.

Die populärsten technischen Regeln zur Beurteilung der Korrosionsgefährdung von geschlossenen, wassergeführten Heiz- und Kühlwasserkreisläufen sind in Deutschland die VDI 2035 [1] und die VDI/BTGA 6044 [2]. Während die VDI 2035 explizit von einer korrosionstechnisch geschlossenen Anlage ausgeht, betrachtet die VDI/BTGA 6044 auch solche Anlagen, die lediglich als atmosphärisch geschlossen gelten. Der Unterschied besteht darin, dass eine korrosionstechnisch geschlossene Anlage keinen nennenswerten Zutritt von Sauerstoff erfährt und sich dadurch im laufenden Betrieb eine Sauerstoffkonzentration von < 0,1 mg/l im Anlagenwasser einstellt. Kommt es aber zu einem intermittierenden oder dauerhaften Eindringen von Sauerstoff, z. B. über Werkzeugwechsel in Kühlkreisläufen (beispielsweise Spritzgussformen) oder diffusionsoffene Komponenten, so sind im Umlaufwasser auch Parameter wie Chlorid zu überwachen. Außerdem besteht die Gefahr der Bimetallkorrosion bei ungüns­tiger Werkstoffpaarung.

Die Rolle des Sauerstoffs
In den hier betrachteten Heiz- und Kühlsystemen werden die Korrosionsprozesse im Wesentlichen durch die Menge des hinzutretenden Sauerstoffs bestimmt – so lange sich der pH-Wert des Umlaufwassers im Bereich von 8 bis 10 befindet. Der im Wasser gelöste Sauerstoff nimmt bei der Metallauflösung zurückbleibende elektrische Ladung auf und hält den Korrosionsprozess (den Metallaustritt in die Wasserphase) in Gang. Niedrige pH-Werte (< 6) können dies auch, man spricht dann von Säurekorrosion.
Wie schnell die Korrosionsreaktion abläuft, hängt dann jeweils noch von der Temperatur und der Leitfähigkeit des Wassers ab. Im günstigsten Fall kommt es bei einer Anlage nur zur erhöhten Bildung von „Schwarzschlamm“ (Magnetit) und nicht zu Durchrostungen an Heizkesseln, wobei sich aus 10 mg Sauerstoff 36 mg Magnetit bilden. Aber auch, wenn kein Wanddurchbruch auftritt, können die Korrosionsprodukte empfindlich stören.
Sauerstoff kann auf verschiedenen Wegen in ein Heiz- oder Kühlsystem eindringen:

  • durch mangelhafte Druckhaltung aus der Atmosphäre (Mindestdruck 0,5 bar an allen Punkten),
  • durch Diffusion über permeable Bauteile (Dichtungen, Schläuche, Kunststoffrohre, Membranen,
  • als gelöster Sauerstoff über das Füll- oder Ergänzungswasser (7 – 13 mg/l),
  • aus Luftpolstern, die bei Wartungs- oder Umbauarbeiten entstehen.

Die Korrosionsrate bleibt vernachlässigbar gering, wenn der im Füllwasser vorhandene natürliche Sauerstoffgehalt durch Korrosionsprozesse aufgezehrt, über die Lebensdauer der Anlage nicht mehr als deren doppeltes Anlagenvolumen nachgespeist wird und Sauerstoffzutritt kaum möglich ist.
Drei Punkte sind hier nicht zu unterschätzen:
1.) 1 l Luft enthält 260 mg O2 im Vergleich zu den 10 mg in einem Liter frischen Trinkwasser,
2.) nicht gesperrte, flexible Schläuche, etwa an Deckenheizstrahlern, zeigen beträchtliche Diffusionsraten, z. B. EPDM-Schlauch bis zu 7 mg pro Tag und Schlauchmeter (40 °C/DN 20),
3.) auch als gesperrt geltende Schläuche zeigen bei höherer Temperatur (> 60 °C) eine nicht zu vernachlässigende Zutrittsrate.

Was bedeutet „diffusionsdicht“ nach DIN 4726?
Die wesentlichste Unterscheidung bei Kunststoffrohren/-schläuchen ist die Einteilung in „sauerstoffdiffusionsdicht“ und „nicht sauerstoffdiffusionsdicht“. Kunststoffrohre gelten nach DIN 4726 [3] als sauerstoffdicht, wenn sie eine maximale Sauerstoffdurchlässigkeit von weniger als 0,32 mg/(m² · d) bei einer Wassertemperatur von 40 °C aufweisen. Bei nicht sauerstoffdichten Rohren oder Schläuchen liegt der entsprechende Wert im Extremfall bei 16 mg/(m² · d). Die Fläche bezieht sich auf die Innen­oberfläche des Rohres/Schlauches.
Bei höheren Wassertemperaturen steigt die Diffusionsrate deutlich an, und zwar um den Faktor 2 bis 3 je 10 °C Temperaturerhöhung. Die Norm berücksichtig dies und erlaubt bei 80 °C daher 3,60 mg/(m² · d).
Während im Trinkwasser die Innenbeschichtung von Rohren < DN 80 mit Epoxidharz nicht zugelassen ist, lag es nahe, eine derartige Methode auf alte, diffusionsoffene Fußbodenheizungsrohre anzuwenden (z. B. Oxyproof). Die Durchführung war allerdings nicht unkompliziert und wurde in Fachkreisen auch kontrovers diskutiert. Das Verfahren ist aktuell nicht mehr am deutschen Markt.

Weitere Einflussfaktoren auf die Sauerstoffkorrosion
pH-Wert

Je alkalischer bzw. je höher der pH-Wert, des­to gehemmter läuft die Reduktion von Sauerstoff an der Metalloberfläche ab. Hinzu kommt, dass sich auf den üblicherweise verbauten Metallen bei alkalischen pH-Werten eine schützende Passivschicht bildet.

Elektrische Leitfähigkeit
Bei salzarmer Betriebsweise, also niedriger Leitfähigkeit des Anlagenwassers, werden generell alle elektrochemischen Vorgänge an der Metalloberfläche verlangsamt.

Härte
Etwas Resthärte im Anlagenwasser wirkt sich hinsichtlich der Sauerstoffkorrosion positiv aus, da sich Kalziumkarbonat – insbesondere bei neutralen Wässern – an Stellen abscheidet, wo die Sauerstoffreduktion stattfindet. Der Härtebildner wirkt hier als (kathodischer) Korrosionsinhibitor.

Flächenverhältnis
Sind in einer Anlage viele korrosionsbeständige Komponenten, z. B. Rohrleitungen aus Kunststoff oder Edelstahl (1.4520), verbaut, an denen Sauerstoff nicht oder nur langsam abreagiert, wird sich dieser auf die wenigen Bauteile aus Schwarzstahl konzentrieren und dort die Wahrscheinlichkeit für einen Korrosionsschaden erhöhen.
In der Zusammenfassung bedeutet dies, dass eine salzarme Betriebsweise mit möglichst hohem pH-Wert wasserseitig zwar den bestmöglichen Korrosionsschutz darstellt, diese jedoch im Falle eines nennenswerten Sauerstoffeintrags keinen ausreichenden Schutz mehr bietet. Lässt sich der Sauerstoffeintrag nicht durch andere technische Maßnahmen beheben, sollten in geschlossenen Anlagen Zehrmaßnahmen erwogen werden.
Vollschutzprodukte, welche Korrosionsinhibitoren enthalten, sollten atmosphärisch offenen Anlagen vorbehalten bleiben, sofern diese nicht aus korrosionsbeständigen Werkstoffen konzipiert sind. Diese werden hier nicht besprochen.

Dosierung von Sauerstoffbindemittel
Für die chemische Bindung von Sauerstoff wird meist Natriumsulfit dosiert, das ab Temperaturen von ca. 40 °C eine hohe Sauerstoffbindegeschwindigkeit zeigt. Organische Bindemittel wirken erst oberhalb von 60 °C, fördern die Biofilmbildung und erhöhen so die Wahrscheinlichkeit für mikrobiell induzierte Korrosionserscheinungen. Die VDI 2035 rät daher – in ihrem Gültigkeitsbereich – zum Verzicht.
Auch zeigt Natriumsulfit Nebenwirkungen. Bei der Reaktion mit Sauerstoff entsteht Sulfat, das die Leitfähigkeit des Heizungswassers im Laufe der Zeit stark erhöht. In der Anlagenpraxis finden sich hier nicht selten Werte bis 2000 µS/cm, die gelegentlich Ausblühungen (Salzkrusten) an Regelventilen verursachen. Zudem besteht v. a. im Niedertemperaturbereich auch wieder eine erhöhte Wahrscheinlichkeit dafür, dass sulfatreduzierende Mikroorganismen korrosiv wirkendes Sulfid erzeugen.

Elektrochemische Verfahren zur Sauerstoffbindung
Diese Verfahren nutzen ein „unedles“ Metall – i. d. R. eine Magnesiumlegierung – im galvanischen Kurzschluss mit einem Bauteil aus Edelstahl. Während sich das Magnesium auflöst, findet parallel dazu an der Edelstahloberfläche die elektrochemische Reduktion von Sauerstoff statt. In der Summe entsteht dann Magnesiumhydroxid als Korrosionsprodukt, das als Schlamm entfernt werden muss. Gleichzeitig wird der pH-Wert etwas angehoben. So weit so gut, wäre da nicht die Sauerstoffbindegeschwindigkeit recht niedrig und das Gerät auch eher für den Hauptstrom auszulegen. Wird die Anlage salzarm betrieben, ist die Funktion zu hinterfragen.

Entfernen von Sauerstoff durch Vakuumentgasung
In atmosphärisch geschlossenen, aber korrosionstechnisch offenen Anlagen, die in den Geltungsbereich der VDI 6044 fallen, ist eine Reduzierung des korrosionsrelevanten, gelösten Sauerstoffs im Umlaufwasser über Entgaser nur bedingt möglich. Auch Unterdruck und Membranentgaser, welche zwar gelösten Sauerstoff entfernen können, sind nicht ausreichend geeignet, diesen so weit zu reduzieren, dass keine Korrosionsschäden mehr zu befürchten sind. Zum Vergleich: Der Richtwert liegt bei 0,1 mg/l, der Vakuum­entgaser bringt es auf 1 - 2 mg/l gelösten Restsauerstoff. Interessant bleibt aber das Nachspeisewasser, das sich im direkten Durchlauf deutlich absenken lässt, in der Regel zwischen 60 % und 80 %.

Herausfiltern von Sauerstoff
Bei dieser neuen, derzeit in der Markteinführung befindlichen Methode, kann nach Art einer „Filterpatrone“ der im Wasser gelöste Sauerstoff direkt beim Hindurchströmen eliminiert werden. Diese Patronen enthalten ein anorganisches Sauerstoffbindemittel, das auf einem Trägermaterial komplexiert ist und nach der Reaktion mit dem Sauerstoff auch auf diesem verbleibt. Im Gegensatz zur Dosierung von Sauerstoffbindemittel, wird die Zusammensetzung des Umlaufwassers hier nicht nennenswert verändert und die bekannten Nachteile/Nebenwirkungen treten daher nicht auf.
Wird eine Heizanlage mit kaltem Trinkwasser über eine solche Patrone – ggf. in Kombination mit einer Entsalzung oder Enthärtung – neu befüllt, können dem Füllwasser direkt 80 bis 90 % Sauerstoff entzogen werden. Grund dafür ist auch die extrem große Oberfläche der vorbehandelten Harzkugeln im Vergleich zur Elektrodentechnik (ca. 1000 : 1), bei der dies so nicht möglich ist. Logischerweise bilden sich dann auch bis zu 90 % weniger Korrosionsprodukte.
Prädestiniert für dieses Filterverfahren ist die Anwendung im Teilstrom, wenn die Anlage nach dem Spülen mit Trinkwasser befüllt wird. Ab einer Wassertemperatur von 35 °C lässt sich der gelöste Sauerstoff mit hoher Geschwindigkeit auf eine Restkonzentration von < 0,05 mg/l zehren. In einem Arbeitsgang lassen sich so die relevanten Korrosionstreiber Salze, Säuren und Sauerstoff beherrschen.
Für großvolumige (Problem-)anlagen bietet sich als technisch elegante Lösung die Kombination mit einem festinstallierten Modul zur Teilstromentsalzung an. Hier kann das Wasser zeitgesteuert mechanisch filtriert und von kontinuierlich oder intermittierend eindringendem Sauerstoff befreit werden. Falls erforderlich, wird zudem eine Entsalzungspatrone in Abhängigkeit der Leitfähigkeit des Anlagenwassers automatisch hinzu geschaltet, sodass auch immer eine salzarme Betriebsweise sichergestellt ist.

Fazit
Mit den neuen Sauerstoffzehrpatronen von perma-trade kann nun auf einfache Weise der Korrosionstreiber Nr. 1 in geschlossenen Heiz- und Kühlsystemen durch den Fachhandwerker beherrscht werden. Besonders interessant ist diese Methode nicht nur für die perfekte Aufbereitung größerer Nachfüllwassermengen, sondern auch als Lösung für größere Problemanlagen. Die Verbindung eines fest installierten Moduls zur Teilstromaufbereitung in Kombination mit einem Korrosionsmonitoringsystem, das den erforderlichen Patronenaustausch anzeigen könnte, wäre eine optimale Problemlösung. Auch deshalb, weil die eingesetzten Ionenaustauschharze alle regeneriert werden und kein nennenswerter Abfall einsteht.

Literatur:
[1] VDI 2035: Vermeidung von Schäden in Warmwasser-Heizungsanlagen, Steinbildung und wasserseitige Korrosion
[2] VDI/BTGA 6044: Vermeidung von Schäden in Kaltwasser- und Kühlkreisläufen
[3] DIN 4726: Warmwasser-Flächenheizungen und Heizkörperanbindungen – Kunststoffrohr- und Verbundrohrleitungssysteme
[4] Ende, D.: Korrosionsschäden durch Sauerstoffzutritt, TGA-Fachplaner 05/2020
[5] Suissetec Merkblatt 8/2021: Apparateanschlüsse – Einsatz von EPDM-Rohrverbindungen
[6] BDH-Informationsblatt Nr. 3: Korrosionsschäden durch Sauerstoff im Heizungswasser – Sauerstoffkorrosion
[7] Kruse, C.-L.: Der Lufteintrag ist nach wie vor ein Problem, Heizungsjournal 12/2008

Autor: Dr. Dietmar Ende, Sachverständiger für Korrosion und Leiter Forschung/Entwicklung bei der perma-trade Wassertechnik GmbH

www.perma-trade.de


Sauerstoffmessung im Heizungswasser
Wie das Blut im menschlichen Körper, verrät auch das Umlaufwasser viel über den Zustand einer Anlage – in punkto Sauerstoffmessung allerdings nur, wenn diese direkt am System erfolgt. Eine Probenahme für ein Labor oder die Messung in einem Gefäß würde hier ansonsten nur falsche, deutlich erhöhte Werte, liefern. Damit die Korrosionswahrscheinlichkeit für die in Fließrichtung nachfolgenden Bauteile gering bleibt, sollte die Konzentration des gelösten Sauerstoffs < 0,1 mg/l betragen (Richtwert VDI 2035).





Verwandte Artikel



Zahlreiche Ausnahmen für die HallenheizungSchwank GmbH

Zahlreiche Ausnahmen für die Hallenheizung 19. Februar 2024

Für Hallen mit über 4  m Deckenhöhe gibt es im neuen GEG Ausnahmeregelungen und Übergangsfristen Es gibt verschiedene Lösungswege, wie...
Weiterlesen

Magnesium fürs HeizungswasserBild: Elysator

Magnesium fürs Heizungswasser 19. April 2022

Permanente Sauerstoffreduzierung schützt vor Rost und Schlamm in Heizungsanlagen; Störungen und Schäden werden vorgebeugt Lieber Gast, um alle Inhalte sehen...
Weiterlesen

Abtauchen ins Heizungswasser

Abtauchen ins Heizungswasser 10. Februar 2022

Korrosion und Wasserbeschaffenheit in Heizungsanlagen – Teil 2 Lieber Gast, um alle Inhalte sehen zu können, müssen Sie angemeldet sein!...
Weiterlesen

Wärmepumpe + Infrarotheizung im GebäudebestandBild: TU Dresden

Wärmepumpe + Infrarotheizung im Gebäudebestand 26. Juli 2023

Eine Infrarotheizung als Spitzenlastsystem für Wärmepumpensysteme in Bestandsgebäuden – eine technische AnalyseDie Energiewende, und hier speziell die Wärmewende, hat die...
Weiterlesen

Abtauchen ins Heizungswasser

Abtauchen ins Heizungswasser 2. Februar 2022

Korrosion und Wasserbeschaffenheit in Heizungsanlagen – Teil 1 Lieber Gast, um alle Inhalte sehen zu können, müssen Sie angemeldet sein!...
Weiterlesen

Wärmeverlust, Heizungs-Check und robuster Alleskönner

Wärmeverlust, Heizungs-Check und robuster Alleskönner ANZEIGE

Wie ein Smartphone mit Wärmebildkamera von Cat phones Profis im Bereich Sanitär, Heizung und Installation unterstützt. Winter is coming! Das...
Weiterlesen

Heizungsprüfung oder Heizungs-Check?Bild: Wöhler

Heizungsprüfung oder Heizungs-Check? 28. Juni 2023

Um Heizungsanlagen im Bestand zu optimieren gibt es zwei Verfahren Seit Oktober vergangenen Jahres ist die Heizungsprüfung nach EnSimiMaV an...
Weiterlesen

Heizungswasser – Planung ist wichtigBild: Buderus

Heizungswasser – Planung ist wichtig 4. November 2022

Richtlinie VDI 2035 fasst nach 16 Jahren beide Teile zusammen und gibt wertvolle Hinweise für die Planung Die Entwicklung im...
Weiterlesen

Viega Deutschland GmbH & Co. KG: Neues Edelstahl-Rohrleitungssystem für Heizungs- und KühlanlagenBild: Viega

Viega Deutschland GmbH & Co. KG: Neues Edelstahl-Rohrleitungssystem für Heizungs- und Kühlanlagen 3. März 2022

Mit „Temponox“ führt Systemanbieter Viega ein neues Edelstahl-Rohrleitungssystem speziell für die Installation von Heizungs- und Kühlanlagen in den Markt ein....
Weiterlesen

Dichtheitsprüfung an Heizungs- und Trinkwasser-Installationen

Dichtheitsprüfung an Heizungs- und Trinkwasser-Installationen 3. Januar 2022

Tipps und Hinweise für die Baupraxis Lieber Gast, um alle Inhalte sehen zu können, müssen Sie angemeldet sein! Jetzt registrieren...
Weiterlesen


Diesen Artikel teilen auf:   Facebook X XING



Ausgewählte Inhalte



Leistungsgarantie



Datensicherheit

×